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730, Japan 
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Abstract. We investigate the critical propetties of the three-matrix chain model carrespond- 
ing to the Blume-Emery-Grihiths model in a homogeneous magnetic field an a fluctuating 
lattice. The third-order critical line and the tricritical paint disappear after the magnetic 
field is switched an. It is, however. found that another critical line exists as a result of 
naive pettubalive expansion and the string susceptibility exponent is - 4  on the line. It is 
also shown that the critical exponent of the magnetic moment p is A which coincides with 
the KPZ solution. 

1. Introduction 

Recently the problem of the random matrix model has been investigated in the context 
of studying non-critical string theory and also two-dimensional statistical models 

describing minimal unitary series coupled to gravity [ 11 are given by an n-matrix model 
or not [2,3]. It was found that the two-matrix model gives the correct critical exponents 
of the king model [4,5] and the three-matrix model has been examined by the author 
and in [6]. 

In the previous paper [7] we found that the three-matrix chain model corresponds 
to the Blume-Emery-Griffiths (BEG) model with the lattice gas constant K being one 
in the unit of the spin exchange integral J on a fluctuating lattice. It was shown in [7] 
that in this model on the T - p  plane (T,p are the temperature and the chemical 
potential respectively) the third-order critical line on the spin ordering extends to the 
tricritical point from the critical point of the Ising model. Along this line the string 
susceptibility exponent yst, is - f ,  but at the end of this line, i.e. the tricritical point, 
it changes to -a .  If one generalizes the chain matrix action adding another possible 
cross term, one can consider the other models for arbitrary value of K. For example, 
as will be discussed later, the cases of K = 0,3, a correspond to the tricritical Ising 
model, three-state Potts model [8] and the king model [4] respectively. Our case of 
K = 1 belongs to the intermediate region of K, and therefore it can be considered as 
the (1,3)-deformation of the conformal field theory [9] coupled to the gravity keeping 
the cosmological constant critical value. 

This paper is concerned with the generalization of the previous paper to the case 
of a non-zero magnetic field. One of the advantages of the method of the matrix model 
is that it is exactly solvable. The model in the case of a regular lattice was considered 
using the method of the mean field approximation [ 101. In the regular lattice calculation, 
the tricritical point disappears when a magnetic field exists and the new critical line 
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appears for a given magnetic field in a certain interval of the chemical potential. The 
minimum value of the chemical potential on the line is at least greater than the value 
of the tricritical point. So it is interesting to examine whether the critical line exists 
for such a region of the chemical potential on a fluctuating lattice. 

If the same structure as a regular lattice is also obtained for a non-zero magnetic 
field, it is demonstrated that the correspondence between matrix models and statistical 
models become clear. Hence it is important to work out the three-matrix model toward 
a generic case. 

2. Formulation 

To discuss the three-matrix chain model with the homogeneous magnetic field H let 
us consider the following path integral for three N x N Hermitan matrices U, U and f 

Z N ( g ) =  d u d u d f e x p  ~ ~ + u ~ + f ~ - Z n ( u + u ) f  I 
+& (eHu4+e-Hu4+Af4) 

N 

where 

The free energy in the planar limit N + m 

is equivalent to the partition function of the BEG model 

as was shown in [7]. The Hamiltonian is given by 

where uc = *l,  f j  =0, 1 and G',"' is the adjacency matrix of the planar graph. As was 
discussed in [ll],  the integral of equation (1) can be rewritten by the 3N real integrals 
up to the irrelevant factors 

N 

Z N ( g ) = J f  n dxidyidzi ~ ( X , , Y , , ~ ~ ) A N ( ~ ) A N ( Y )  ( 5 )  
i=, 

where 

( 6 )  
1 
N -x2-y2 - z 2 + 2 a ( x + y ) z  --(g,x4+ g2y4+g,z4) 
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and A,(x) is the Vandermonde determinant. Let us introduce two orthogonal poly- 
nomials p , , (~)  and Q , ( y )  satisfying the orthogonality condition 

It should be noted here that V, and V, are the counterparts of each other by the 
exchange H tf -H. Therefore the 'dual' transformation H t* -H changes g, , MI and 
P. into g,, M z  and Qn.  We also introduce the variables R,, S,, aik)u and their dual 
ones R,, s,, G I k j 2 , ,  ( i  = 1 , .  . . , N; k = 0 , 1 , 2 )  defined by the following equations: 

xP,,(x)= P,+ l (x )+R.P ,_ l (x )+S ,P ,_3(x )+ .  . . 

= E  % ) " , P , ( X )  (9a) 

z(M,P,)(z) =I % ) " , ( ~ , q ( z )  (9b) 

~ 

, 
z(M,M,P.)(z) =I q2)"j(M3MI4)(Z)  

j 

and their dual equations. Considering the integrals 

and their dual ones, one obtains the relations 

a,,,&, = G(k) jh i  k = 0, 1 , 2  

and their dual ones. Using the identities 

dPa-1 
dx  dy dz W(x, y,  z) - Q.(y)=O dx 

d 
dx  dy dz WX, y ,  2) -[PAX) - ~ " l Q . - ~ ( y  1 = 0 dx 

dPn-, 
dx  dy dz W(x, y, z) - Q.(y)=O 

I 
I d x  
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and taking the large-N limit 

we finally get the following three equations 

f ( l + 6 g  eHR) = k +6g e-"(k'+ 3) -$x 

a4(k +f) = a2f( l+6g eHR)+6Agf'[(1 +6g eHR)'(1+6g e-"d) 

(14) 

+ 2 g  eHf(1+6g e-Hd)2+8(gf)2(1+6g e"R)] (15) 

a4S=2gf'[e-Ha2+A{(1+6g e-Hd)3+12g e-"f(l+6g eHR)(1+6ge-"k) 

+24g3f' e-"}] (16) 

and their three dual equations. The free energy in the planar limit can be calculated 
in terms ofthese equations and therefore these equations have much information about 
the solution. Actually the free energy and the magnetization are obtained in the 
following expressions: 

where z = 6gf( l ) / a2  and g = g ( z )  is defined by 

and 
g ( z )  = f  eHi(Z- 1) - f a 2 r ~ + ~ a 4 z 3 ~ A n 2 z 3 ( r '  e-" +Za'ri~+&7~z')  (19) 

(20) Az2[r2i+~a"z2r+~a2zF2 eH]+( r  -a')z+(l - F )  e" = O  

where r =  1+6geHR and i=  1+6g e-"!?. zo expresses the critical surface of gravity 
determined by 

ago- 
az 

- 0. 

If one eliminates r and i in the right-hand side of equation (19), the free energy is 
given by (17) as a function of z, a', A and H. However it is difficult, and so we consider 
the following perturbative expansions taking account of the duality 

m 

i ( z ) =  1 ( -H)2"r , , ( z ) .  W C )  
n=o 
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Substituting equations (22) into (20) and expanding eH into the power series of H, 
one can decide r,, order by order. Especially the all order calculations are possible in 
the case of A = 0 (Ising limit), i.e. 

a22 - 1 1 rO-1 
" n ! z + l  
=-- f l * l  ro = - 

2 - 1  

Therefore from (19) 

1 2 2  
g2Az) =- (1 +e)' 3(2n)! ( l  -2)2(1 f Z ) 2 '  

Equations (24) give the same expression as by Boulatov and Kazakov [5] up to the 
factor 1/( 1 + c)'. In the generic case it is difficult to calculate at all orders, however, 
it is enough to estimate up to the second power of H to obtain the magnetic 
moment M 

3. Numerical results 

The phase structures of our model are investigated numerically up to the order of H 2 .  
The results for H = 0 were reponed in the [7]. In that case the third-order critical line 
exists in the region of 0 < A  < A* (A* = 0.833). And the tricritical point A = A* is just 
the fourth-order critical point. There is only the critical surface of gravity in the region 
A* <A.  On the other hand, after the magnetic field is switched on the phase structures 
are quite different from the former ones. The results are summarized in figure 1. In 
the region 0 < A < A* the third-order critical line disappears and only the critical surface 
of gravity survives. On this surface the string susceptibility exponent yStr= -4. However, 
the third-order critical line appears in the region A* 6 A < 1 and ys,r = -f on it. The 
gravity critical surface extends to the outer region 1 s A. 

(a) p = 0.50 for A = 

(b) p = 0.49 for A = 0.7 (26) 
(C) /3=0.17 for A = A*. 

(a) is the case of the king limit and (b) the intermediate region which belongs to the 
universality class of the Ising model. ( c )  represents the tricritical point. The value of 
p and yStr coincide with the KPZ [ l ]  solutions for the tricritical lsing model (A,=: ,  
A e  = a  and A,! , , )=- ! ) :  

The numerical results of the critical exponent p are as follows: 

~ s i r = A ( i , , , =  -114. 
Therefore it is considered that (c) belongs to the universality class of the tricritical 
Ising model. 
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Figure 1. The global phase structures are shown when the magnetic field of H = IO-" 
switchesan.Theseparationsareignored.(a)Thecriticalsurfaceofgravityat A =  A'=O.833. 
A is the third-order critical point. The tricritical point disappears. ( b )  A=0.96. B is the 
intermediate point between A and C. It is also a third-order critical point. ( e )  A =  1. The 
critical point disappears and only the critical surface of gravity exists. ( d )  A =  100. 

4. Discussions 

Finally some remarks are in order. In this paper the phase structures are studied up 
to the order of H2. Near the third-order critical line the critical surface of gravity is 
separated into two pieces, a low-temperature piece and a high-temperature piece. 
Therefore one may suspect our results are incorrect. However, it should nevertheless 
be stressed that our model is a gravitational version of the model in [lo] and certainly 
has the third-order critical line in the definite region of the chemical potential and that 
the case of H = 0 does exactly correspond to the BEG model. Therefore it can be 
expected that all order calculations will lead to the structures without separation. 

In consequence of the above consideration, it is conceivable that the m-critical 
king model is described by an m-matrix model extended to the cyclic chain. It is 
designed by the extended Dynkin diagram of su( m). This is correct for m = 2. In the 
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case of m = 3  the extended three-matrix action, adding a uu-term for H =0, 

A= u 2 + u 2 + f 2 - 2 a ( u + u ) f - 2 b u u + -  g (u4+u4+At4)  
N 

gives the propagators 

( u 2 ) = ( u 2 )  = (1 - a ' ) / D  (uu)  = ( b + a 2 ) / D  

( u i ) = ( u i j  = a ( i t b j / D  (,2j= (1  - b' j iD 

~ 

3397 

(28) 

where D = 2 [ 1 -  b2-2(1 + b)a2] .  Comparing the propagators to the Boltzman weights 
for the Hamiltonian 

J and K are parametrized by a and b, 

e-21 - - b + a 2  e-2K = a4( l  + b)2 - 
1-a2 (1 -b )2 (1 -a2) (b+a2) '  

These equations are nothing but the projection from the J -K  plane to the a-b plane. 
The line K = 0 on the / - K  plane is the tricritica! lsing mode!, Hence it is expressed 
on the a-b plane by the curve 

a 4 ( l +  b)'= (1 - b)'(l-a2j(b+ a2) .  

The line K = J which is the model of the previous paper is the line b = 0. The line 
K = 00 (king model) is a = 0. K = 3 1  is projected on the line a = 6. In this case J = ~ / 8  
and K = 3@/8 when A = 1 and then the matrix action of equation (28) becomes 
Z,-symmetric and the Boltzman weights for these values of J and K are exactly 
proportional to the Boltzman weights of three-state Potts model. 
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